Earthquake Threats to Resiliency Hazards in Washington

by

Timothy J. Walsh

Washington Department of Natural Resources

Division of Geology and Earth Resources

September 17, 2010
Recent research has demonstrated that seismic hazards in Washington are larger and more widespread than was known thirty years ago. This map illustrates the current understanding of the potential for strong ground shaking in the northwest, but new research is continuing to reveal previously unrecognized earthquake sources. Only a few will be discussed as threats to the resiliency of the state but there are others as well.
An earthquake on the Seattle fault could generate ground shaking levels comparable to or greater than the recent earthquakes in Haiti and New Zealand. And while the largest shaking intensities would be limited to western Washington, the economic disruption caused by damage to port facilities could affect not just all of Washington but Alaska as well.
Recent work on the southern Whidbey Island fault has demonstrated that it is capable of large (~M7.4) earthquakes, but that it may be considerably more extensive than shown here. Damage from this scenario would not only be severe in northern Puget Sound but on Vancouver Island as well.
The Tacoma fault has been shown to be active as well and probably capable of ~M7 earthquakes which would cause severe damage in southern Puget Sound.
Eastern Washington has significant, though not huge, sources that could severely disrupt traffic and electrical transmission on the Columbia River.
Characterizing the Tacoma Fault

Linear features identified in geological and geophysical data run west-northwest across the south-central Puget Lowland from the Tacoma region to Hood Canal. Local and regional experts likely have identified most of the strands of the Tacoma fault (shown in the map below), although the eastern extent of the fault zone remains under investigation. Some experts suggest that the Tacoma fault is connected to the fault at depth and that the total amount it has moved over time increases westward. A large earthquake (M=7) occurred on the Tacoma fault about 1100 years ago, evidenced by changes in elevation of coastal marshes surrounding the fault.

Scenario Earthquake

A scenario displays the ground motion amplitudes expected for a hypothetical earthquake (see the ShakeMap below). These are derived using computer models with inputs from geological and geophysical observations specific to the region and fault of interest. This scenario shows the shaking expected for a M7.1 earthquake on the Tacoma fault zone. The fault break extends along 56 km (~35 miles) of the fault between Eatonville, Wash, through Vashon Island, and ends near Federal Way (black line on ShakeMap). While this scenario is based on the best information available, it still represents a simplified and highly smoothed version of the true ground motion. Even more important to note is that the damage resulting from these motions is likely to be even more variable, depending on the specific characteristics of each affected structure.

Ground Motions

Most of the hazards associated with earthquakes result from the shaking, or ground motions, caused by seismic waves that radiate out from the fault as it breaks. Seismic waves transmit the energy released by the earthquake, so bigger earthquakes generate larger and longer-lasting waves. The dimension and orientation of the fault and characteristics of the rapid slip that occurs during the earthquake affect the pattern of shaking. In addition, the materials the waves travel through affect their strength and duration.

Earthquake ground motions typically are measured in units of acceleration (expressed as the percentage of gravity, or %g). This unit is used because it is proportional to force, which is what engineers need to know to estimate the likely impact of earthquake ground motions on buildings and other structures. Acceleration can also be qualitatively related to the effects of the shaking. For example, light damage might be expected for motions in the range 0-10 %g, and 34-65 %g motions would likely cause heavy damage. It is important to remember that ground motions alone do not determine their impact, and the type and quality of construction of the structures shaken also are key.

References:

Contacts:
Craig Weaver, craig@ess.washington.edu
Art Frankel, afranke@usgs.gov
Brian Sherrod, bsherrod@ess.washington.edu
Joan Gomberg, gomberg@usgs.gov
This scenario of a major Cascadia subduction zone earthquake shows significant damage everywhere west of the Cascades.
A Cascadia subduction zone earthquake would generate the most widespread damage of any scenario. Although the maximum intensity of shaking would be less than for a large shallow earthquake, such as on the southern Whidbey Island fault, Seattle fault or Tacoma fault, strong ground shaking would be felt from northern California to northern Vancouver Island. In addition it would be accompanied by a tsunami that would be devastating within a few miles of the coast.
In addition to strong shaking damage to buildings, nonstructural damage and ground failure can result in widespread disruption to utilities, transportation and the economy as a whole, as demonstrated by these pictures of damage from the recent earthquake in New Zealand.